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Language Modeling on Enzyme-Catalyzed Reactions Unsupervisedly Recover Active
Sites

by KWATE DASSI Loic

We present in this work a Transformer-based language model adapted on enzymatic bio-
catalyzed reactions which independently captures the knowledge of the functional sites of
the catalyst of the reaction. Training language modeling on reaction SMILES complemented
with amino acid sequence information let us define a score based on the attention values to
detect regions of the enzyme that matches the active site. This work is relevant for AI ex-
plainability and paves the way for an extensive application of language models for enzyme
design and reaction optimization in bio-catalyzed chemical processes. We leverage the ex-
pressiveness of the Transformer-based models to understand the substrate-enzyme interac-
tions in the enzyme-catalyzed reactions by training the BERT model with the self-supervised
learning tasks Masked Language Modeling (MLM) and n-gram MLM on bio-catalyzed re-
actions and analyzing the attention matrix of the embedded reactions considered as the rep-
resentation of the mapping graph between the reactants and enzymes. The unsupervised
active site detection road map enabled us to recover 31.51% of experimental active regions
in accordance with the Protein-Ligand Profiler Interaction (PLIP) and 67.77% of active sites
according to the Protein Database Family Pfam.
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I Context and Problematic

Enzyme engineering is attracting considerable attention on an account of the fact that en-
zymes are involved in almost all the natural and synthesized chemical reactions, especially
in bio-catalyzed reactions. In bio-catalytic processes, natural catalysts, such as enzymes,
are used to speed up chemical reactions on organic compounds with the least admissible
activation energy. A significant part of enzymes is proteins. Hence, the approaches used
in protein engineering –Functional understanding of proteins, protein folding, and protein
design– can be tailored to address problems encountered in enzyme engineering. Protein
enzymes, when used towards the acceleration of organic reactions, have to be bound with
the organic compounds in specific locations on the protein, these regions are entitled to
the active site of the protein. It is therefore clear that the functional understanding of the
protein is a crucial part of the way to facilitate the interaction between organic elements
and enzymes. The two main representations of protein widely used are the amino acid se-
quence, and the three-dimensional structure –Protein Data Bank (PDB)– (Berman, Henrick,
and Nakamura, 2003). The functional analysis of protein remains a great problem in life
science due to several which the main are the following: the average length of protein and
protein folding. Because proteins are generally lengthy, it is indeed cumbersome to pro-
ceed with them by hand and the computational treatment is very expensive. The functional
specificity of protein is heavily tied to its three-dimensional structure. Thus, use the PDB
structure in the analysis is, of course, the right way to go. But due to the shortage of 3D
structures and the difficulty of the protein folding, analyze the 1D dimensional structure,
namely the amino acid sequence, enlighten other approaches of the protein understanding
solely based on sequence information. Organic elements, generally the reactants and the
products in bio-catalyzed reactions, are by and large represented in SMILES (Weininger,
1988) strings format.

Considering the sequence representation of the reactants, the enzymes, and the products
as a language of the description of the chemical processes under the hood, we can indeed,
adapt the current methods used in natural language understanding to address the active
site recognition. The last decade has witnessed a surge of compelling architectures and
paradigms of the artificial processing of natural language. The Transformer-based models,
thanks to their expressiveness, achieve the state-of-the-art in many tasks on GLUE (Wang
et al., 2019).

In line with this, the main problem that will lay the groundwork is: how to tune the
natural language understanding methods to break down the chemical grammar in bio-
catalyzed reactions, and therefore, draw out the active regions of proteins?

II Host Institution and Course Expectations

The welcome Institution of our course is IBM Research Lab, Zurich, Switzerland, led by Dr.
Alessandro Curioni. IBM Research Zurich is leading several domains and provide services
in eras where the major are the following: Quantum Computing, Hybrid Cloud Solution,
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Cyber Security, Accelerated Discovery. We worked in the Accelerated Discovery Depart-
ment conducted by Dr. Teodoro Laino and under the supervision of Dr. Matteo Manica,
a research staff member in the Accelerated Discovery Group. As the AI positively impacts
chemistry, one of the main goals of the Accelerated Discovery group is to increase productiv-
ity of research and development processes and foster the construction of long-term solution.

As it was stated in the internship description, the assignments of the course are the fol-
lowing:

• In this internship, the student will work on extending the models for forward and
backward reaction prediction on SMILES to additional chemical representations/ lan-
guages including macromolecules, such as, polymers (Lin et al., 2019) and proteins
(Filipavicius et al., 2020). This will be achieved by expanding the existing transformer
architectures to handle multiple reaction classes and text-based chemical descriptors
using information contained in public databases.

• The candidate will work at all the pipeline components: from data collection and
preparation to model training and inference/deployment

• A successful internship will result in a short publication (workshop paper or research
report) on a multilingual chemical model, that will represent a milestone of capital
importance in the application of deep learning to scientific discovery.

III Introduction

Considerable attention has been focused on ligand-protein enzyme interaction prediction
due to the wide range of applications it induces such as drug repurposing, drug discovery,
molecular docking, and so forth. In bio-catalyzed chemical processes, it is essential to un-
derstand how substrates interact with the enzyme to optimize the necessary energy for that
reactions to happen. A successful accomplishment of these downstream tasks required an
understanding of how small molecules interact with proteins and where that reactions hap-
pen, that is, the active domains of the protein where the inter-linkages are effectively carried
out. Likewise the rise of interest in protein active site recognition, the last five years have
witnessed a breakthrough in the development of methods to understand the human natural
language. Particularly, the advent of the Transformer (Ashish et al., 2017) marked a signifi-
cant milestone in the development of the computational methods for language processing.
The Transformer-based models developed to date progressively provide a meaningful con-
textual mapping of the encoded sentence and in many cases yield a good performance on
downstream tasks built on top of that representation. In this work, we shaped the active
site detection as a language-based task thus took advantage of the compelling Transformer-
based model to provide an insightful latent representation of the enzymatic-catalyzed reac-
tion in terms of mapping between the reactants and enzymes.
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To learn the language of the enzymatic chemical processes, the underlying grammar
that withstands the interactivity between reactant and enzymes, we trained the transformer-
based models Albert (Zhenzhong et al., 2019) and BERT (Devlin et al., 2019) with the self-
supervised learning task masked language modeling (MLM) on the mixture of bio-catalyzed
and organic reactions. After the MLM training, the attention matrix known in this case as
the mapping representation between the reactant and the enzyme was analyzed to extract
the relevant inter-linkages regarding their attention weights. The characteristics of language
modeling are not well understood and language modeling has not been dealt with in-depth
in chemistry. Despite the interest in protein active domain prediction, no one as far as we
know has studied yet the ability of language models to grasp the chemistry grammar of the
bio-catalyzed reactions. We evaluated the ability of the trained models to recover without
supervision, the active regions of protein while merely trained on chemical reactions. The
evaluation was carried out on two main data sources. The first concerns the protein an-
notations from Pfam (Mistry et al., 2020), here we evaluated the capacity of the models to
recognize the annotated protein active site. The second concerns the ligand-protein inter-
actions of co-crystallized complexes given by PLIP (Adasme et al., 2021), we assessed the
aptness of the models to capture the three-dimensional inter-activities between the ligand
and protein with only one-dimensional data namely the SMILES representation of the re-
actants and the amino acid sequence of the enzyme. Our work aims to extend the current
knowledge of language models to the understanding of the chemistry grammar under the
hood, the main contributions of this work are the following :

• Outlined a new language model-based unsupervised approach for the protein active
site recognition.

• Provided a bio-catalyzed reaction knowledge encoder for downstream tasks.

The outline of this is the following: in the next section we review the literature in active site
detection, followed by the methodology, the experiments led and the results obtained, the
interpretation of these results, and a possible outlook of the active site recognition.

IV Related Work

There is a considerable amount of literature on data-driven protein-ligand binding site pre-
diction, protein engineering, and molecular mapping in chemical reactions.

Protein-Ligand Binding Site Prediction. Identify the binding sites on proteins is impor-
tant for a functional understanding of those proteins. Most of the enzymes are proteins; To
optimize the level of the bio-catalyzed reaction energy for a more stable reaction, recognize
the active region on protein becomes a crucial part of the quest. (Liang et al., 2006; Krivák
and Hoksza, 2015) introduced a binding site prediction method using a scoring function
that assigns a ligandability score to the binding pockets, then predicts the active regions
based on the assigned scores. The surge of Machine Learning, in particular the Convolu-
tional Neural Network, has not left biochemistry unarmed. Indeed, several works using
the 3D feature analysis of the protein were conducted to identify the druggable regions.
(Stepniewska-Dziubinska, Zielenkiewicz, and Siedlecki, 2020; Aggarwal et al., 2021; Ko-
zlovskii and Popov, 2020; Simonovsky and Meyers, 2020) used a fully 3D convolutional
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neural network to analyze the three-dimensional feature of the protein-ligand complex then
extract the binding pockets. Besides the three-dimensional structure analysis of protein,
sequence-based functional assessment is also holding information on the amino acid align-
ment. (Harrison et al., 2015) introduced a Naïves Bayes Classifier based on the sequence
information of the protein to predict whether each amino acid residue is active.

Protein Engineering. Several approaches based on the protein structure information
have been developed to apprehend the functional properties of proteins. Likewise, the
Protein-Ligand interaction understanding with the convolutional neural network, (Gligori-
jević et al., 2021) used a graph convolutional neural network along with a sequence repre-
sentation from a pre-trained task-agnostic language modeling for the amino acid residue
annotation. Many protein sequences do not have a corresponding three-dimensional repre-
sentation; the UniProt database (Consortium, 2020) contains about 200M sequence entries.
In another hand, the Protein Data Bank contains only about 68K entries. That is, only 0.03%
of proteins are annotated. In line with this, understand the mapping between the sequence
representation and the 3D structure of proteins became crucial to have a full comprehension
of their functional features. (Ingraham et al., 2019) led a protein design task by lining up
a graph-based model followed by a Transformer-based generative model. Proteins can be
viewed as a sequence of amino acid residues. Hence, the methods developed to process
the natural language can be readily used to understand the underpinning morphology of
proteins. (Brandes et al., 2021; Elnaggar et al., 2020) tailored the masked language modeling
self-supervised training of variant Transformer-based model on protein sequences, there-
fore, provided pre-trained protein encoders for downstream tasks. As the set of proteins
is growing without a consistent annotation alongside, (Madani et al., 2020) leveraged the
language modeling ability of Transformer-based models to generate protein based on tax-
onomy, molecular function, and cellular component.

V Fundamentals in Natural Language Understanding

The work presented here lies at the junction of the natural language understanding (NLU)
and chemistry. Before diving straight in the heart of the work done, it is worth to introduce
the knowledge of natural language understanding that withstands the results obtained.
NLU encloses all the set of methods developed to artificially process natural language –
text, voice – and understand the logic and the information embedded according to the end
business goal. In this section, we will present the preliminaries ranging from the tokeniza-
tion, embedding methods to attention-based models and the contextual mapping.

V.1 Tokenization

The natural language is the most widely used means of communication, it appears to be
intrinsically rooted in the human thought such that we, as humans, do not even realize
how we proceed and understand information conveyed by the natural language. Having
a complexity ranges from the syntactic to the semantic level, different methods have been
undertaken to crumble the text into understandable units. The tokenization is the process by
which a bulk text or voice is broken into pieces so-called tokens (Guo, 1997). Depending on
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the understanding level at which we operate, we have different ways to tokenize corpora.
In the next sections, we will progressively present the character-level, the word-level, the
hybrid-level, and gradient-based tokenization.

Character-Level Tokenization

Tokenize a given corpus at the character-level is the most easiest way to break it down.
Each language leans on its alphabet which is the set of the letter – refers to the smallest
language unit – used to build up the words of that language. The units of the alphabet are
often called bytes, from which the character-level gets its name of byte-level tokenization.
The vocabulary size of the that setting is the size of the alphabet units, which are relatively
small in general, that’s, the size do not exceed 256 (the Khmer alphabet, from Cambodian,
is the longest alphabet in the world with 74 letters). Several NLP researches, operating at
the character level have been done including self-attention-based language modeling (Al-
Rfou et al., 2018), character-level representation for semantic parsing (Noord, Toral, and
Bos, 2020). The firgure 1 presents a use case of this type of tokenization, each letter is fed to
model in order to been processed according a logical business. Whilst maintaining a small
vocabulary size, this tokenization suffers from the lack of the meaningful morphology and
more often requires a neural network deep enough to grasp the meaning of the sequence
provided.

FIGURE 1: Character-level tokenization

Word-Level Tokenization

According to the Cambridge dictionary, the word is a combination of letters with a meaning,
it is a single unit of language that has a meaning and can be spoken of written 1. Each lan-
guage holds a dictionary containing the spoken and written words of that language. Given
a language subject to NLP-based research, the corresponding dictionary is generally added
a UNK word which refers to the unknown words –based on what is in the dictionary– that
will be encountered during the pro-processing of texts. The word-level tokenization mainly
consists in splitting a given corpus into a list of words on which it is made of, preserving the
orders of that words as it is presented in the figure 2.

Sub-Word Level Tokenization

The inconveniences of the character and word-level splitting fostered the conception of
hybrid-level tokenization. First, The character-level tokenization suffers from the lack of

1https://dictionary.cambridge.org/dictionary/english/word

https://dictionary.cambridge.org/dictionary/english/word


6

FIGURE 2: World-Level Tokenization

meaningfulness of the units issued after tokenizing, that is, the resulting letters of the split-
ting do not individually bear enough information on the syntactic structure and the semantic
meaning of the whole tokenized corpus. This drawback consequently burdens the process-
ing of the corpus and requires very deep or strong architectures. Secondly, the word-level,
whilst splitting texts based on the space separating the words, does not take into account the
underlying syntactic structure of words which sometimes gives credit to their meaning. To-
ward addressing the foregoing drawbacks, (Gage, 1994) introduced a data-drive compres-
sion algorithm, Byte Pair Encoding (BPE), that statistically builds a sub-word vocabulary
based on the appearance frequency of the sub-words on the corpus on which the tokenizer
is trained. This hybrid tokenization will be used in our work to build up the vocabulary
language of proteins. The BPE is an iterative algorithm that creates the sub-word vocabu-
lary by joining tokens pair by pair based on their frequency –which must be greater or equal
than a given threshold– until no fusion is possible under the frequency-based conditions. A
succinct presentation of the BPE algorithm can be found on that blog 2 and concrete example
is presented in the figure 3

FIGURE 3: Sub-Word Level Tokenization

V.2 Word Embedding

Once tokenized a given corpus, the result has to be transformed in a format so that a neural
network can understand its meaning and process it accordingly. A wide range of machine
learning methods developed so far support only numerical computations, hence only pro-
cess numerical vectors. It, therefore, becomes mandatory to find a way to map the tokens
to a vector representation. The word embedding is a mapping between token and vector
representation. The mapping approaches developed to date fall into the following classes:
static and dynamic word embedding.

2http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM

http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
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Static Word Embedding

The simplest way to perform the word embedding is to build a look-up table which contains
the tokens of the vocabulary associated with a fixed vector representation –trainable or not–
then, use that mapping table to transform a given corpus into matrix (the collection of the
row-vector or column-vector representations of the corpus’s tokens). The most pre-eminent
static word-embedding used are the following: the singular value decomposition (SVD), the
skip-gram and bag-of-word (BOW) model, Glove.

The SVD word embedding involves two processes. The first step consists in constructing
the co-occurrence matrix. The second step concerns the singular value decomposition of the
the co-occurrence matrix from which the word-embedding mapping will be drawn. Let
consider V, |V| as the vocabulary holding n tokens. The co-occurrence matrix L ∈ Rn×n is
matrix such that Li,j is the number of times the token pair (i, j) appears in the large corpora
on which the search pair algorithm will iterate through. Once the L matrix built, it is then
decomposed using the SVD. So, we have following representation L = UΣVT. Based on
that decomposition several approaches can be used to build up the word-embedding, the
simplest way is to add up the matrix U and VT

The Skip-gram and Bag-of-word models are trainable construction in which the word-
embedding mapping matrix is optimized to a given task so-called mask language modeling
(MLM). Given a corpus, the MLM is a task which consists in, firstly, randomly masking
some tokens in the corpus and secondly, predict that by forward pass through as model
or predictor. The skip-gram consists in the prediction of the context of a given word, that
is, the masked words surrounding that word, whereas the BOW consists in leveraging the
context to predict a target word. The figure 4 summarizes the two definition introduced.

FIGURE 4: Skip-Gram and Bag of Word Model
Source 3

Formally, Consider a vocabulary of size V, W ∈ RV×d the word-embedding matrix with d
as the hidden dimension of vector representation of each vocabulary token, 2p + 1 as the
window size of the context in which the token will be masked to be predicted.

Given S = {ti}n
i=1, a sequence of tokens, k, a randomly selected token in the sequence S,

f : R2p → RV and g : R→ R2p×V two derivable multi-variate mappings.
In the skip-gram, the context Ck of a given token tk is given by the following formula

Ck = argmax(g(W[k, :]), axis = 1)

In the BOW, the central word tk of given context is given by the following formula

tk = argmax( f ([W[t− p : t− 1, :], W[t + 1 : t + p, :]]), axis = 1)
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Glove(Pennington, Socher, and Manning, 2014) has been brought in toward improving
the performance of the word-embedding on similarity-based tasks. In this work, it’s claimed
that the statistical occurrence of words in a text bears information about their meaning. Hy-
pothesizing that the ratio between the co-occurrence probabilities between words follows
the same propensity as the difference between their corresponding vector representation,
they trained a log-bilinear model with weighted-least-squares objective to create the em-
bedding look-up table.

Dynamic Word Embedding

The static word embedding methods struggle with the contextualization of the vector rep-
resentation provided. The meaning of a given word depends on the context in which it is
used. For example, in these two sentences: "I opened a bank account" and "I am standing on
the river bank", the signification of the word "bank" is unique in each case, though the static
embedding will always give the same vector representation and will consequently fail to
capture the contextual dependency within the sentence embedded. On the way to address
that issue, several methods have been introduced to strengthen the understanding of the
inter-linkages between the tokens of the sequence treated. These approaches share a com-
mon part, that is, the static embeddings. On top of that, several attention-based means have
been initiated to construct the vector representation of given token based on the represen-
tation of the tokens in its neighborhood. The most prominent approaches are Elmo and the
Transformer-based encoders (Peters et al., 2018; Ashish et al., 2017). In the former, the word
vectors are the internal states of a deep bi-directional Long-Short Term Memory (LSTM)
whereas in the latter, the vector representations are figured out by a self-attention-based
network that can also be observed as a consensus-based representation where each token
attends the computation of vector representation of the others. In this work we exploit the
conveniences of the contextual mapping provide by the Transformer-based model to per-
form a logical mapping between two spaces, namely, the reactant and the enzyme space in
bio-catalyzed reactions..

V.3 Self-Attention and Contextual Mapping

In this section, we present the core concept on which our work relies. It is worth precising
that we will not fully develop how the vanilla Transformer works in this section as it is
established in the original paper (Ashish et al., 2017). In contrast, we will only present the
self-attention mechanism under the same conditions as in the original introduction. More
precisely, the notions skipped here are the following: the static embedding, the positional
encoding, and the multi-head attention.

a Transformer is a sequence transducer function, that is, given an embedded sequence
S ∈ Rn×d, a passing of S through a Transformer yields another sequence S′ with the same
shape as S. a Transformer mainly consists of two parts: an encoder and a decoder. Each part
consists of a stack of components so-called Transformer-blocks and each Transformer-block
is made up of two sub-blocks, that is, the self-attention block and a feed-forward neural
network on top of the self-attention. The encoder and the decoder of the Transformer are
respectively used for the NLU and the natural language generation (NLG). In regard to the
goal of our work (which entirely relies on NLU), we will only present the Transformer en-
coder architecture. Besides the purposeful difference between the Transformer encoder and
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encoder, a glimpse on their architectures points out that, the main difference between them
is the mask applied on the self-attention mechanism in the decoder for the auto-regressive
text generation, that is, the mask ensures the rightward flow of the information in the gener-
ation process (the newly generated tokens do not attend the representation of the previously
generated ones). The three main components of the self-attention module are the following:
the queries, keys, and values.

In the upcoming writings, we will used the following notation:

• dmodel , dk, dv, d f f ∈N, b1 ∈ Rd f f , b2 ∈ Rdv

• WK, WQ ∈ Rdmodel×dk , WV ∈ Rdmodel×dv , W1 ∈ Rdv×d f f , W2 ∈ Rd f f×dv five linear projectors.

• Att : R.×dmodel → R.×dmodel the self-attention mapping

• FFN : R.×dmodel → R.×dmodel , FFN(x) = max(0, xW1 + b1)W2 + b2 the feed-forward
neural network

• LayerNorm : R.×dmodel → R.×dmodel the layer normalization

Having a sequence X ∈ Rn×dmodel , the first transformation within the Transformer-block is
described as follows:

Q = XWQ, K = XWK, V = XWV

X′ = So f tmax(
QKT
√

dk
)V, X′ = X + LayerNorm(X′).

The second transformation step concerns the passing through the feed-forward network.

X′ = X′ + FFN(X′)

It is important to highlight that this transformation does not involve the token mixing like
the previous one, it only modifies the second dimension of the sequence.

VI Methodology

The extraction of active sites in proteins consists in determining the regions on these pro-
teins where a given substrate can be bound. We address the site active site recognition by
reshaping the task into an NLP-based frame in which the site identification consists in the
analysis of the attention matrix given a bio-catalyzed reaction. We hypothesized that, train
a Transformer-based model with the unsupervised learning tasks MLM and n-gram MLM
will inherently capture the inter-activities between the reactants and enzymes. After train-
ing the BERT model on reactions with the MLM and n-gram MLM, we performed the map-
ping between the reactants’ atoms and the enzyme’s tokens then, compared our active sites
with the experimentally determined active sites from PLIP (Adasme et al., 2021) and finally,
performed the molecular docking and compared the binding free energy of the complexes
obtained with the predicted and the experimental active sites.

VI.1 Formal Definition of the Problem

A formal reshaping of the assigned task is essential to understand how we implemented
our end-to-end pipeline of active site discovery. The dataset used to train the model is
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made up of reaction rows. Each reaction row consists of the concatenation of the SMILES
strings of reactants, the amino acid sequence of the enzyme, and the SMILES strings of
products. The reactant representation is separated from the amino acid sequence with a
pipe "|" symbol and the amino acid sequence is separated from the product representation
with the redirection symbol "»". One example of a reaction row is showed in the figure 5

FIGURE 5: Example of Bio-Catalyzed Reaction

• C[C@@H]1O[C@@H](O)[C@@H](O)[C@H](O)[C@@H]1O refers to the reactant (fig-
ure 6a)

• METPQTGYQVQSYKIPVKRYCQTLDLRDSPELIAEYRKRHSETEAWPEILA
GIREVGILEMEIYILGTRLFMIVETPVDFDWDTA
MARLNTLPRQQEWEEYMAIFQQAAPGMSSAEKWKPMERMFHLYNT

• C[C@@H]1O[C@H](O)[C@@H](O)[C@H](O)[C@@H]1O refers to the product (figure
6b)

(A) Example of Reactant (B) Example of Product

FIGURE 6: Reactant and Product

After the tokenization of the foregoing reaction, we obtained a list of tokens (presented in
the figure 7) referring to the set of the understandable units that will be processed by the
model.
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FIGURE 7: Tokenized Reaction

Mask Language Modeling

The masked language modeling training in this work is intended to build a model strong
enough to get one’s hand on the underlying grammar that sustains the underground chemi-
cal processes in bio-catalysis. The consensus-based representation of tokens in self-attention-
based models, complemented with the MLM training is theoretically and sufficiently strong
to construct a suitable contextual mapping to represent the encoded sequence (Yun et al.,
2020). In the following writings, we present first, a formal definition of the MLM and sec-
ondly, the settings used in our experiments.

MLM Definition.
Our definition of MLM directly incorporates BERT as the Transformer-based model used.
Let us consider S = [s1, ..., sn], a sequence of n tokens; BERT : N. → R.×dmodel , a transducer
function representing the model BERT; [MASK], a token that belongs to the language vocab-
ulary and used to represent the masked tokens; f : V. → N., a bijective mapping from the
vocabulary to the set of natural numbers that binds each to token to its corresponding index
in the set of vocabulary index, g : R.×dmodel → R.×|V|, a linear mapping designed to map
the latent presentation space of sequence to the vocabulary space in order to facilitate the
prediction of the masked tokens. The important steps of the MLM traning are the following:

• Choose the masking probability p (0.15 in our case). The probability to mask a given
token under the binomial distribution.

• Mask the entry sequence with the forenamed probability and keep the indices of the
the masked tokens. As the result, we get a sequence S′ that contains dp|S|e of masked
tokens and M the indices of the tokens [MASK].

• Transform the masked sequence S′ to its analogous sequence of the index, named X in
our settings.

• A forward pass of the sequence X through the Transformer model, in that case BERT,
that gives a hidden representation X′ ∈ Rn×dmodel of X

• A forward pass of X′ through the linear projector g, yielding a sequence X′ ∈ Rn×|V|.
The second dimension the tensor X′ could be viewed a the logits that will be fed to
a smooth function to draw out the probability distribution of the masked tokens over
the vocabulary.

• The final step contains the application of smoother on the aforesaid logits, the compu-
tation of the loss value through an objective function and finally the optimization of
that loss value. The commonly used smoother function is so f tmax that gives a prob-
ability distribution of the predicted tokens over the vocabulary space. The following
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equations summarize the final step of MLM training.

X′ = so f tmax(X′, axis = 1)

loss = −∑
i∈M

log X′[i, Xi]

The value loss is optimized and the parameters of the model BERT are updated ap-
propriately.

A bird’s eye view on the proteins in our data reveals that, based on the sequence in-
formation, the active site on proteins are more locally than sparsely distributed over the
sequence. The skewed distribution of the active regions led us to the local feature analy-
sis on the protein-side while keeping the broad feature investigation for the reactants and
products. This reason motivated our choice of mixing the MLM and n-gram MLM train-
ing. Concretely, we sparsely masked the tokens of the reactants and products and densely
masked the tokens of the proteins, strictly speaking:

• we randomly selected p of reactants and products’ tokens then masked them

• we chose n(n = 3) the size of the masking, randomly the chose the centers of the ball
in which the tokens will be mask. Roughly speaking, we chose

⌈
p|Sp|

n

⌉
centroids and

Sp refers to the sequence of amino acid residues.

The figure 8 presents an example of the masked reactions under the aforementioned condi-
tions.

FIGURE 8: Masked Reaction

Active Site Definition

Active sites on enzymes are the regions where substrates can be bound and undertake a
chemical reaction. The principal approaches used to determine the 3D structures of protein
are the X-ray protein crystallography and the nuclear magnetic resonance (NMR). Having
the three-dimensional coordinates of each atom of a given protein, it becomes obvious to
observe the clustering of active regions using the Euclidean distance in that 3D space as the
clustering metric. Two pillars that foster the sequence-side analysis of protein are the follow-
ing: transform a protein sequence in its 3D shape remains a great problem in the protein en-
gineering in the sense that a given sequence could have multiple representation depending
on the functional properties expected, and there is no a direct binding between the residues
in sequence information and the residues in the 3D structure. By dint of the non-intrinsic
binding between sequence and three-dimensional structure residues, the local leaning of
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active sites in 3D space is not well observed with the sequence information. Owing to the
non-locality distribution on sequence, we defined the active region of a given protein as
the sequence of the active segments of the that protein. Formally, consider S = [r1, ..., rn] a
sequence of n amino acid residues, the active region AS of S will be defined as follows:

AS = {(ai, bi)}m
i=0

(ai, bi) and m refer respectively to the boundary indices of the active segment i and the
number of active segments on the protein.

Active Site Extraction Algorithm

The extraction algorithm entirely relies on the analysis of the attention matrix after embed-
ding a reaction through the Transformer model. It is noteworthy to step back in the self-
attention equations and directly point the component subject to our analysis during the site
extraction. In the next writings we will keep the same terminology as in the section V.3 and
assume that the model BERT is already trained under the conditions specified in the section
VI.1. Consider S, (|S| = n = r + m + p) as a reaction r, m and p refer respectively to the
length of the reactant, the enzyme, and the protein. As it is stated in (Ashish et al., 2017),
each Transformer-block performs the self-attention computation and therefore produces an
attention matrix Att determined by:

Att = So f tmax(
QKT
√

dk
) ∈ Rn×n

Since we were interested in the mapping between the reactant and the enzyme space to be
able to draw the active regions of the enzymes, we extracted the sub-matrices which hold
information regarding the binding between the reactant and the enzyme. More concretely,
we took out a matrix P ∈ Rr×m obtained by adding up the following two sub-matrices:
Att[1 : r, 1 : m] and Att[r + 1 : r + 1 + m, 1 : r]T, that is,

P = Att[1 : r, 1 : m] + Att[r + 1 : r + 1 + m, 1 : r]T

The figure 9 presents an instance of the attention matrix extracted from the initial attention-
matrix for a given reaction. The algorithm 1 used the draw out the active sites is a consensus-
based algorithm in which each reactant’s atom has k votes to choose the best-bound en-
zyme’s tokens. The chosen enzyme’s tokens are gathered and entitled to the active region
of the enzyme.

Algorithm 1 Active Site Extraction

1: procedure EXTRACTION(P ∈ Rr×m, k)
2: active_site = set()
3: for i in 1..r do
4: line = P[i]
5: for j in argmax(line, k) do
6: active_site.add(j)
7: return active_site
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FIGURE 9: Reactant-Enzyme attention

VI.2 Data Preparation

A great part of the data was already collected by the host institution at the beginning of
the internship. Although the data preparation is not the main point of the course, we will
succinctly described the acquisition process in the following words:

Training Data Preparation

The training data consists of a mixture bio-catalyzed and organic reactions where an en-
zymatic reaction comprised the reactants, an enzyme, and the products, and an reaction is
made up of the concatenation of the SMILES strings of reactants and products separated by
the redirection symbol "»". The organic reactions were collected from USPTO (BHAVEN,
2011) whilst the enzymatic ones were collected from different sources with much more com-
plex approach.

The enzyme commission (EC) number is numerical nomenclature of enzymes based on
the type of chemical reactions they accelerate. The preliminary processes of the dataset col-
lection, consisting in the gathering of the enzymatic reaction complemented with the EC
number, was conducted as the same as initiated in (Probst et al., 2021). The enzymatic reac-
tions with the EC numbers were collected from different sources including: Rhea (Alcântara
et al., 2012), BRENDA (Schomburg, Jäde, and Schomburg, 2002), PathBank (Wishart et al.,
2020), and MetaNex (Ganter et al., 2013). Once the catalyzed reactions with the EC num-
bers were downloaded, the EC number for each reaction was substituted by all the enzyme
proteins within that EC number family. The amino acid sequence of proteins were col-
lected from UnitProt (Consortium, 2016). The figure 10 shows the EC number distribution
in dataset used to lead our experiments.

Test Data Preparation

As we independently evaluated the aptness of Transformers models to unsupervisedly rec-
ognize active sites on proteins, we need a test bed from that learning experience. Two ap-
proaches were used to construct the test set. The first concerns the interaction annotation
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FIGURE 10: Enzyme Commission number distribution
The distribution of samples at EC-levels 1 (corresponding to enzyme classes) and 2, as well
as EC-levels 2 and 3 of oxidoreductases (class 1), transferases (class 2), hydrolases (class 3),

lysases (class 4), isomerases (class 5), ligases (class 6), and translocases (class 7). Source
(Probst et al., 2021)

of the co-crystallized ligand-protein complexes using the Protein-Ligand Interaction Pro-
filer (PLIP) (Krivák and Hoksza, 2015), the second is about the annotation of amino acid
sequences using the sequence alignment algorithm over different protein families to check
the preserved active domains; the external tool used to perform that sequence alignment
was The Protein Families Database (Pfam) (Mistry et al., 2020).

The annotation of sequences with the protein-ligand profiler was already carried out by
the welcome institution. The annotation with Pfam was realized by designing a sub-system
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interacting with the xml API of Pfam 4. By this end, we annotated about 60K protein se-
quences. A noteworthy difference between the two annotation processes is the dependency
on the substrate, that is, PLIP’s annotation uses the protein-ligand complex for the annota-
tion and consequently needs the substrate to detect the binding regions on proteins whereas
the Pfam’s annotation is completely substrate-free, it only leans on the overlapping between
a given sequence and the preserved domains of different protein families. Although the two
approaches undertaken diverge on the substrate dependency perspective, the annotated ac-
tive regions follow the same rules as it is mentioned in the section VI.1. Figures 11a and 11b
show a protein annotation from Pfam and PLIP respectively, the blue part in both represents
the active regions and the red one represents the remainder. Knowing that PLIP actually
uses the three-dimensional representation to tag the ligand-protein intern-linkages, it will
be further consider as the ground-truth for the assessment and Pfam’s annotations will be
consider as the baseline though.

(A) Pfam’s Annoation (B) PLIP’s Annotation

FIGURE 11: Protein Annotation

VI.3 Evaluation

We developed a two-folds evaluation to analyze the unsupervised binding site predictions
of our model. The first is an alignment-based evaluation and the second an assessment
based on the analysis on the free energy of binding of ligand-protein complexes.

Alignment-Based Evaluation

Because of the use of sequence information to train the model BERT to understand lan-
guage of catalyzed reaction, we initiated a sequence-based evaluation to test the ability of
the model to capture the interactions with substrates at the sequence unit level (residue
level). In this context, the main statistical indicators used were the following: the overlap-
ping score, the false positive rate, the token recovery.

4https://pfam.xfam.org/help#tabview=tab11

https://pfam.xfam.org/help#tabview=tab11
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• Overlapping Score. It measures the matching at the residue level between the ex-
perimentally found active segments and the predicted ones. Considering the formal
definition of the binding segment defined in VI.1, calculating the overlapping score
is turned to the measurement of the overlapping between a list of intervals. Strictly
speaking, let consider S, |S| = n a sequence of residues, the overlapping score between
the predicted active region A = {(a1i, b1i)}n

i and the ground-truth B = {(a2i, b2i)}m
i is

defined as follows:

overlap score =

n

∑
i

m

∑
j

max(0, min(b1i, b2j)−max(a1i, a2j))

m

∑
i

(b2i − a2i)

• False Positive Rate. It quantifies the failures of the model. In our configurations, a
false positive segment refers to a predicted segment that doesn’t overlap any experi-
mentally determined active segment. The next formula defines the false positive rate:

False positive rate =

n

∑
i

(b1i − a1i)1 m∧
j=1

[a1i ,b1i ]∩[a2j,b2j]=∅

n

∑
i

(b1i − a1i)

• Token Recovery. The last statistical indicator we used, reflects the fraction of the en-
zyme’s token that was utilized in the prediction. This indicator is significant because
it regulates the token expansion as the number of votes for each reactant’s atom in-
creases. The following is the definition of token recovery:

token recovery =
|predicted tokens|
|enzyme′s tokens|

Free Energy-Based Evaluation

The major limitation of the sequence-based evaluation is that it doesn’t take into consider-
ation the three-dimensional location of the annotated residues. A non-overlapping on the
sequence-side could still be a valid active region based on the 3D distance to the actual bind-
ing sites. Once the ligand has found a conformation to be bound to a given protein, a fair
means to evaluate the goodness of the pose (ligand-protein complex) is to measure its bind-
ing affinity. The common method used to assess the binding affinity is the evaluation of
the free energy of the pose. In the way of broadening our understanding of the predictions,
we performed the molecular docking with Autodock Vina (Eberhardt et al., 2021; Trott and
Olson, 2010) and computed the free energy of the poses using the two configurations: (1)
the centre of the binding box was computed by averaging the coordinates of the atoms in
the predicted active sites. (2) the centre of the binding box was computed by averaging the
coordinates of the atoms in the experimental active sites.
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VII Experiments and Results

The data preparation procedure is reminiscent of what was done in (Probst et al., 2021). On
top of the ECREACT dataset, we replaced the Enzyme Commission numbers with all the
amino acid sequences of proteins within their classes drew from the UnitProt database. The
EC numbers were balanced within the dataset to assure that each type of reaction, according
to the EC classification, is significantly represented. The emerging dataset was split into the
following parts for the training:

• Training Set : ∼7M of reactions.

• Validation Set : ∼4K of reactions.

• Test Set: ∼4K of reactant-enzyme pair in co-crystallized form.

We trained the model BERT with the MLM and n-gram MLM using the following configu-
ration:

• Batch size : 4096

• Optimization Algorithm : LAMB, with 20928 optimization steps.

• Learning rate scheduler: ReduceOnPlateau with 0.7 as the reduction factor.

TABLE 1: Overlapping score, false positive rate, and token recovery

Overlap Score False Positive Rate Token Recovery
Random Model 4.98% 84.20% 11%
Pfam 24.01% 78.01% 13.09%
BERT-base 28.98% 75.56% 9.35%
RXNAAMapper (ours) 31.51% 66.63% 11.1%

The sequence-based evaluation was carried out in two steps. The first concerned the evalu-
ation of the ability of the model to recover the active regions whilst considering the ground
truth as the sites predicted by Pfam (using sequence alignment over different protein fam-
ilies to check the preservation of the domain). The second referred to the evaluation of the
faculty of the model to recognize the sequence segment of the experimental binding sites
determined with PLIP. In the first evaluation configuration, we were able to recover 67.7%
of the active regions. table 1 summarizes the result obtained in the second configuration, the
description of each approach undertaken is given as follows:

• RXNAAMapper corresponds to our model built on the contextual mapping of the
reactant-enzyme pair provided by BERT.

• BERT-base refers to the basic pretrained version of BERT of linguistic corpora

• Pfam symbolizes the active site provided by the sequence alignment algorithm

• Random Model, to be sure that we capture insightful information on reactions in terms
of the mapping between the reactant and enzyme space, we built up a random model
to design such as baseline to outperform. Following that way, we uniformly randomly
sampled tokens using the same token recovery as the RXNMapper then, entitled these
tokens to the active regions predicted by the random model.
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The evaluation based only on the sequence information does not provide insights re-
garding three-dimensional location. To reinforce our understanding of the active regions
predicted. We performed a protein-ligand docking with the predicted active regions and
the ground truth using the docking tool Autodock Vina (Eberhardt et al., 2021; Trott and
Olson, 2010) then compared the binding free energy of the two configurations. Given the
three-dimensional structure of a ligand and a protein, the 3D coordinates of the centre of the
binding box, and the size of the binding box, the protein-ligand docking consists in finding
the best conformation of the ligand on the protein within the binding box. The best confor-
mation there refers to the configuration of the ligand which has the lowest free energy. As
we needed the centres of the binding box in the two configurations namely: the predicted
active regions and the experimentally found active sites, we averaged the coordinates of all
the atoms within each region and we set 50 Angstrom as the size of the docking box. At
the end of the molecular docking, we compared the binding free energy of the two settings,
figure 12 reports visual information regarding the free energy of the predicted and ground

FIGURE 12: Docking Energy

truth active sites. Figure 13 presents a study case where we compare the binding site anno-
tation using the reaction mapper we built (RXNAAMapper referring to our model) against
the sequence alignment. As is has been pointed out in this instance, our RXNAAMapper
is more accurate than the sequence overlap algorithm (Pfam). The predictions are more
densely distribution rather than sparsely like with Pfam.

VIII Discussion

The first step analysis of the results pointed in table 1 shows that the model BERT indepen-
dently trained with self-supervised learning tasks can apprehend the mapping between the
reactant and the enzyme which is important in finding the active regions of that enzyme
protein. We were able to unprecedentedly recover 31.51% of experimental binding sites.
Knowing that these ground truth binding sites were determined with the 3D structure of
the ligand-protein complexes using PLIP, the results obtained are a significant signal that
besides the sequence information grasped by our model, it is also able to implicitly learn the
layout of the active regions in the three-dimensional structure. A willingness to fully un-
derstand the prediction led us to the authentication with molecular docking. The result of
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FIGURE 13: Comparing active site predictions in 3D
Comparison of the prediction from Pfam alignments (left) and RXNAAMapper (right)

using PLIP as a groundtruth.

the ligand-protein docking confirms our hypothesis stating that the mappings between reac-
tants and enzymes are unconditionally learned with MLM-based training of self-attention-
based models. Following the reverse grade scale of the energy in figure 12, the greater the
energy, the better found the active site. Indeed, our RXNAAMapper performs on par with
PLIP (used to draw out the ground truth active regions) and in some situations outperforms
it.

IX Personal Assessment

This section provides a personal evaluation of our internship, we will mainly point out
the major difficulties encountered the means undertaken to overpass them. Overall, we
state that the internship was a lovely experience and was conducted under the thorough
supervision of my mentor Dr Matteo Manica and my closest manager Dr Teodoro Laino.
They supported me both in the work environment and my personal life. The foremost ex-
pectation I had before starting the course was to lead it face-to-face, due to the pandemic,
COVID-19, which severely hit the world and negatively impact the daily life at business,
we were obliged to undertake the training remotely with some days onsite for the sake of
the employees’ health. This, therefore, represents the main difficulty I encountered during
our internship. Working with like-minded people, the main skills I developed during my
internship are the following:

• Large-Scale Data Management. The datasets used to train our models were extremely
large (∼200Gb). Hence, the training was not lead as usual with small-scale data and
we, therefore, developed methods and attitudes to optimally manage the data size
taking into account the infrastructure limitation (GPU memory, RAM, Disk, Network
bandwidth)

• Literature in Drug Discovery. Chemistry is not the main focus of my studies but by
leveraging the knowledge acquired in past experiences, namely my previous intern-
ship, on drug discovery, I deepen my understanding of how catalyzed reactions work
and how we can build computer-aided systems to withstand bio-catalyst processes.
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For instance, the computer-aided approach is based on language modelling for active
site detection.

• Presentation Skills. The internship was sprinkled with events wherein I had to briefly
summarize the project I was working on to someone not in the same team. The major
events are the following: poster session, group presentation, and scrum meeting.

During our course, we worked with the scrum methodology wherein the milestones were
set progressively to achieve the main goal, consisting in designing an attention value map-
per for the enzymatic active site recognition. The workflow of our work is summarized in
the following Gantt diagram. 14

FIGURE 14: Gantt Diagram

X Conclusion

Use only sequence information of reaction to finding out the active sites of proteins, en-
zymes involved in the reactions represents a significant milestone towards breaking down
the 3D structure dependency of the methods in accelerated discovery to date. In this work
we presented an active site recognition approach that entirely relies on the self-attention
mechanism of Transformer models, trained with the self-supervised learning tasks MLM
and n-gram MLM on the mixture of bio-catalyzed and organic reactions, which was able to
recover one-third of the experimental sites. A double-checking of the predictions showed us
that the predictions of sites obtained binding energy commensurable with the experimen-
tal sites one. This signal effectively confirms that the method built can recognize the active
regions of the amino acid sequence of proteins.

Regarding the expectations of the internship which are in a nutshell, design a reactant
amino acid mapper and contribute to a research paper on the topic, we can state that, ac-
cording to the results obtained, the expectations are reached and a contribution has been
made on a research paper under reviews at the NeurIPS workshop AI for Science. Albeit
this noteworthy achievement has been reached, tremendous eras remain uncovered in the
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accelerated discovery. One road map that could be undertaken in line with the work we
have done, is the study of the syntax morphology of protein for a better functional under-
standing. Indeed, in our work, we used a fixed tokenization process (which is free from
the gradient optimization) to split the protein sequence into tokens, thus we implicitly lose
information on the morphology of protein.
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